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Abstract 
 
Breast cancer is a prevalent type of malignancy in females wherein there is uncontrolled cell 
growth within the breast tissues. Proper identification and classification are the basis for effective 
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treatment and management. There has been potential in increasing classification accuracy as 
well as support for early diagnosis through more recent advancements with deep learning 
models, particularly when utilized in medical imaging. This research aims to enhance the 
precision of breast cancer classification by comparing deep learning model performance. Python 
and deep learning frameworks were employed in developing and comparing models for breast 
cancer classification using the Curated Breast Imaging Subset of the Digital Database for 
Screening Mammography (CBIS-DDSM) dataset, which includes Digital Imaging and 
Communications in Medicine (DICOM) mammography images obtained through Kaggle. The data 
was quality-assured and made uniform. A conventional Convolutional Neural Network (CNN) was 
first applied for binary classification. Transfer learning was implemented with the DenseNet121 
model that was pre-trained on ImageNet to improve performance. Layers of the model were 
frozen, and classification layers were included as custom. Fine-tuning was accomplished by 
unfreezing certain layers to enhance the ability of the model to discriminate between malignant 
and benign cases. The conventional CNN model achieved accuracy of 51.87%, weighted F1-
score of 0.35, precision of 0.27, and recall of 0.52. Following transfer learning with DenseNet121, 
accuracy was improved to 71%, weighted F1-score of 0.71, Specificity of 0.83, Sensitivity of 0.61 
and AUC of 0.7. Fine-tuning resulted in an end accuracy of 88%, with weighted F1-score, 
Sensitivity of 0.87, Specificity of 0.82, precision at 0.87 and Area Under the Curve (AUC) at 
0.85.This study highlights the effectiveness of DenseNet121 combined with transfer learning for 
improving breast cancer classification accuracy using DICOM images from the CBIS-DDSM 
dataset, contributing to more reliable early detection and treatment strategies. 
 
Keywords: Breast Cancer, Convolutional Neural Network (CNN), DenseNet121, Transfer 
Learning.  

 
 

1. INTRODUCTION 

Breast cancer is the most prevalent type of malignancy found globally, notably in women 
(Yiallourou, 2023; Smolarz et al., 2022; Cuthrell & Tzenios, 2023). It is defined by the 
uncontrollable reproduction of cellular tissues found inside the breast tissues. The condition can 
develop into tumors (Wang et al., 2024; Akinpelu et al., 2024; Akl & Ahmed, 2024; Ojo et al., 
2025; Hong et al., 2025). The earlier the detection of the malignant cells present in the body, the 
more promising the treatment is for the patient (Xiong et al., 2025). Nonetheless, the condition 
may be experienced by the patient without symptoms at all until the point of malignancy. 
 
Despite its importance as a diagnostic imaging tool, mammography image analysis is a time-
consuming process that requires human expertise, resulting in possible inaccuracies (Dave et al., 
2025; Santos et al., 2024). In an effort to overcome these inconveniences, Computer-Aided 
Diagnostic (CAD) software was conceived to support and help radiologists identify and classify 
cancer accurately (Hussain et al., 2024). This aid utilizes machine learning, specifically deep 
learning, to evaluate images. 
 
Convolutional Neural Networks (CNNs) are one of the most popular deep learning models for the 
assessment of medical images because of their capability to detect complicated patterns in 
images (Zangana et al., 2024; Mienye et al., 2025; Takahashi et al., 2024; Manjunatha & 
Mahendra, 2024). However, regular CNN models have limitations with complicated images like 
the DICOM mammography images (Sharafaddini et al., 2024; Salehi et al., 2023). However, the 
need to train models using a large number of images and prevent vanishing gradients has 
promoted the concept of transfer learning, which can work efficiently even while handling fewer 
labeled images (Chutia et al., 2024). DenseNet121, one of the CNN models designed using the 
concept of dense connectivity, turns out to be one of the most accurate models for such 
applications and avoids complications such as vanishing gradients (Blahová et al., 2025). 
 
The current study examines the capability of the DenseNet121 architecture with the use of 
transfer learning for the classification task of breast cancer based on mammography images. The 
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results derived from the proposed method are then compared to a basic CNN architecture to 
ascertain enhancements made within the context of accuracy, recall, precision, and overall 
classification performance. 

2. LITERATURE REVIEW 

The development of Deep Learning algorithms that perform significantly better than traditional 
ones has completely altered the landscape of research work done in the classification of 
mammography and histopathology images. Traditional approaches involved the use of classical 
Machine Learning models such as Support Vector Machines (SVMs). The model used manually 
designed features, including texture and mass properties. For instance, the work done by Falconi 
et al. in 2020 highlighted the applicability of the SVM approach to the DDSM database, where 
they extracted a total of 181 features, resulting in an AUC of 0.805. The approach showed 
promise but was limited by the need to design features manually, which was not particularly 
successful in the case of medical images that have complex properties. The development in 
Deep Learning, specifically Convolutional Neural Networks, introduced a new approach that 
exploited automatic feature extraction. The adoption of transfer learning approaches was also 
early and greatly appreciated in the field of medical imaging, as annotated datasets are limited in 
these fields. For example, learning was transferred using ResNet50 and MobileNet by Ansar et 
al. (2020); accuracies of 78.4% and 74.3% were consequently obtained for the classification task 
on the MIAS dataset. The same was adopted by Prusty et al. (2022) with the use of MobileNet, 
and accuracies of 86.8% and 74.5% were obtained for the DDSM and CBIS-DDSM datasets, 
respectively. Additionally, accuracy of 81.99% was obtained by Sharma et al. (2022) using 
VGG16 on the MIAS dataset, showing its applicability despite its limitations. 

However, aside from mammography, the effectiveness of transfer learning has also been 
validated in other applications within the field of medical imaging. For example, Kaur and 
Mahajan (2025) were able to reach a recognition accuracy of 98.53% for the classification of 
brain tumors through the use of ResNet152 combined with GoogleNet, exemplifying the 
applicability and efficacy of CNNs across various tasks and datasets. Another example is given 
by Zahra et al. (2023), who was able to reach an accuracy rate of 98.4% utilizing the features 
offered by the use of DenseNet, noting the significant impact and need for image preprocessing 
to improve performance within a specific class. Elkorany et al. (2023) further improve these 
findings by combining the features gathered from multiple CNNs and then utilizing other machine 
learning algorithms such as KNN, SVM, as well as RF to gather an accuracy rate of 94.5% within 
the MIAS image repository. This was further supported by Chakravarthy et al. (2024). 

More recent works aim to optimize CNN architectures and further improve models. Meenalochini 
and Ramkumar (2024) used EfficientNet-B4 and reached 98.46% for INbreast. Laishram and 
Rabidas (2024) used image preprocessing methods and implemented Genetic Algorithms, and as 
a result, they enhanced classification accuracy to 83.5% on INbreast. Lee et al. (2017) 
implemented a combination of machine learning and deep learning approaches and reached 
83.61% on mini-MIAS. Transfer learning models utilizing DenseNet121 attracted recent attention. 
Laishram and Rabidas (2024) implemented DenseNet121 on BreakHis histopathological images 
and reached 96.09% on 100x magnified images. Bello et al. (2024) further optimized 
DenseNet121 for skin lesion classification. They implemented additional dense layers with leaky 
ReLU activation and outperformed EfficientNetB0, ResNet34, and VGG16. Ahad et al. (2024) 
illustrated that although CNNs perform well independently, their combination can further improve 
prediction and reached 99.94% using an ensemble of six models including DenseNet121, 
ResNet18, and MobileNetV2. Improved preprocessing and data augmentation methods were 
proven to further improve models performance. Seneng et al. (2025) utilized a combination of 
techniques such as CLAHE, Median Filtering, and Wavelet Transform and found VGG19 to reach 
98.04% accuracy with DWT-enhanced mammography images, although issues of imbalance 
were shown to exist. Chugh et al. (2024) made a comparison between transfer learning and 
traditional approaches to machine learning. Their study found that transferred CNNs (MobileNet, 
ResNet50, and DenseNet169) performed well and had around 97% accuracy, learning around 
4% better than SVM and RandomForest. Lastly, Taifi et al. (2025) adjusted DenseNet121, 
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DenseNet201, and MobileNetV2 models by freezing some of the initial convolutional blocks and 
used GELUs as activation functions. Their optimized models showed 97% to 99.6% accuracy on 
the MIAS, INbreast, and DDSM databases, and that improvements were statistically proven using 
paired t-tests. 

Despite the significant achievements of using transfer learning through advanced CNN 
architectures like DenseNet, VGG, ResNet, and EfficientNet for the diagnosis of breast cancer, 
some research loopholes still need to be addressed. Current studies mainly focused on the 
comparison of various pre-trained architectures of deep learning without giving much importance 
to the comparison of the aforementioned architectures with conventional CNN architectures. 
Moreover, although various datasets including BreakHis and MIAS have achieved significant 
attention from the research community, little attention has been paid to the mammography CBIS-
DDSM dataset, although its diagnostic challenges are higher. In addition to these limitations, 
although some studies through architectural improvement and ensemble methods demonstrated 
near-perfect accuracy in their respective results, the proposed models featured complex 
architectures that reduce their practical applications in real-world scenarios. In the proposed 
approach, an exhaustive comparison between the baseline CNN architecture and the transfer 
learning method using the DenseNet121 model for the mammography CBIS-DDSM dataset 
would address these limitations. It would clearly reveal the significant improvements achieved 
through transfer learning to prove the authenticity and importance of DenseNet121 in breast 
cancer detection. Table 1 shows the overall summary of the prior art works in the proposed area. 

 

S/N Author(s), 
Year 

Identified Gap Method Result Limitation 

1 Falconi et al. 
(2020) 

Classical ML 
models required 
manual feature 
design 

SVM with 181 
handcrafted 
features on 
DDSM 

AUC = 0.805 Dependent on 
manual feature 
extraction; 
limited ability to 
capture complex 
patterns 

2 Ansar et al. 
(2020) 

Limited 
exploration of 
deep learning in 
mammogram 
classification 

Transfer 
learning using 
ResNet50 and 
MobileNet on 
MIAS 

78.4% and 
74.3% 
accuracy 

Small dataset 
size; moderate 
performance 

3 Prusty et al. 
(2022) 

Need for 
improved 
accuracy across 
datasets 

Pre-trained 
MobileNet on 
DDSM and 
CBIS-DDSM 

86.8% and 
74.5% 
accuracy 

Dataset 
variability 
affected 
performance 

4 Sharma et al. 
(2022) 

Traditional 
CNNs limited by 
feature depth 

VGG16 on 
MIAS dataset 

81.99% 
accuracy 

Limited 
scalability across 
datasets 

5 Kaur and 
Mahajan 
(2025) 

Applications 
beyond 
mammograms 
underexplored 

ResNet152 
and 
GoogLeNet on 
brain tumor 
MRI 

98.53% 
recognition 
rate 

Performance 
may not 
generalize to 
heterogeneous 
datasets 

6 Zahra et al. 
(2023) 

Impact of 
preprocessing 

DenseNet with 
preprocessing 

98.4% 
accuracy 

Dataset-specific; 
generalizability 
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on DL models 
unclear 

unclear 

7 Elkorany et 
al. (2023) 

Single CNN 
models prone to 
limitations 

Multi-CNN 
feature 
extraction + 
KNN, SVM, 
RF 

94.5% 
accuracy 

Increased 
complexity; 
interpretability 
challenges 

8 Chakravarthy 
et al. (2024) 

Hybrid feature 
pipelines 
underexplored 

Inception-V3, 
ResNet50, 
AlexNet 
features + 
SVM 

98% accuracy High 
computational 
overhead 

9 Meenalochini 
and 
Ramkumar 
(2024) 

Need to balance 
CNN depth and 
efficiency 

EfficientNet-
B4 on 
INbreast 

98.46% 
accuracy 

Requires high 
computational 
resources 

10 Laishram 
and Rabidas 
(2024) 

Feature 
optimization 
limited 

Genetic 
algorithms 
with 
preprocessing 

83.5% 
accuracy 

Lower 
performance 
than DL 
baselines 

11 Lee et al. 
(2017) 

Pure DL models 
struggled with 
dataset 
variability 

Hybrid ML + 
DL on mini-
MIAS 

83.61% 
accuracy 

Modest 
performance; 
dataset 
constraints 

12 Potsangbam 
and Devi 
(2024) 

DenseNet121 
underexplored 
in 
histopathology 

DenseNet121 
on BreakHis 
dataset 

96.09% 
accuracy 
(100× 
magnification) 

Limited to 
histopathological 
images 

13 Bello et al. 
(2024) 

Need to 
optimize 
DenseNet121 

DenseNet121 
with added 
dense layers 
and 
LeakyReLU 

Outperformed 
EfficientNetB0, 
ResNet34, 
VGG16 

Increased model 
complexity 

14 Ahad et al. 
(2024) 

Individual CNNs 
underperformed 

Ensemble of 
six CNNs 
including 
DenseNet121 

99.94% 
accuracy 

Computationally 
expensive; 
reduced 
interpretability 

15 Seneng et al. 
(2025) 

Role of 
preprocessing in 
CNNs unclear 

VGG19 with 
CLAHE, 
median 
filtering, 
wavelets 

98.04% 
accuracy 

Dataset 
imbalance issues 

16 Chugh et al. 
(2024) 

Limited 
comparison 
between 
classical ML 
and CNNs 

MobileNet, 
ResNet50, 
DenseNet169 
vs. SVM/RF 

~97% CNN 
accuracy; ~4% 
higher than ML 

Requires large 
datasets 
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17 Taifi et al. 
(2025) 

Need for 
improved fine-
tuning strategies 

Modified 
DenseNet121, 
DenseNet201, 
MobileNetV2 
with GELU 

97–99.6% 
accuracy on 
MIAS, 
INbreast, 
DDSM 

High training and 
tuning complexity 

TABLE 1: Summary of Related Works on Breast Cancer Classification 

3. MATERIALS AND METHODS 
In order to determine the effectiveness of deep learning models for the classification of breast 
cancer images, the study adopts an experimental research design. The study proposes a 
comparative study of a regular Convolutional Neural Network (CNN) model versus a transfer 
learning model utilizing a DenseNet121 model. In relation to the above, a CNN model and a 
transfer learning model utilizing a DenseNet121 model were used for the classification of images 
from the CBIS-DDSM database to yield better results for the diagnosis of breast cancer. A step-
by-step process of the study is presented in Figure 1. 
 
Starting with the CBIS-DDSM dataset, which is downloaded from the Kaggle platform and initially 
converted using various preprocessing methods like rotation, augmentation, normalization, and 
scaling to make it ready for the process of training models. In an attempt to robustly train and test 
the models, the dataset is split equally into the training and testing data sets. In an effort to 
construct a standard for comparison, the initial model built is a standard CNN binary classifier 
(benign vs. malignant) model. Subsequently, the DenseNet121 model, an advanced deep 
learning model well-known for being remarkably proficient at the task of extracting relevant 
features from the given images, is introduced. On the back of the pre-trained image net weights, 
the DenseNet121 model begins with the freezing of the initial layers and the subsequent training 
of the custom-made classification layers. 
 
Afterwards, selective unfreezing of layers of DenseNet121 was performed for the subsequent 
fine-tuning process to improve the model’s adaptability to the distinct characteristics of the breas:t 
cancer images. The models were trained, validated, and tested for evaluation using accuracy, 
precision, recall rate (or Sensitivity), specificity rate, F1 scores, and the Area Under the Curve 
(from the Receiver Operating Characteristic Curve), for the comparison of standard CNNs to 
DenseNet121 for the use of Transfer Learning. 

FIGURE 1: Research implementation diagram. 
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3.1. Description of Data 
For this analysis, the Curated Breast Imaging Subset of the Digital Database for Screening 
Mammography (CBIS-DDSM) is utilized. The DDSM is a contemporary subset that is generated 
from the original DDSM. The original DDSM database includes 2,620 mammographic image 
scans labeled as normal, benign, or malignant and are all pathologically confirmed. The dataset 
in the CBIS-DDSM is ground-truth verified by an experienced observer and is considered to be 
the ideal data set for the development of computer-aided systems for decision-making purposes 
due to the appropriateness of the data set and the fact that it is pathologically verified. 

The datasets include JPEG images, incorporating left and right breast scans with both 
Mediolateral Oblique (MLO) and craniocaudal (CC) views. Compared to other openly accessible 
datasets on mammography images such as MIAS, INbreast, and BCDR, there exist numerous 
benefits associated with CBIS-DDSM that range from large annotated ROIs to DICOM-based 
truth segmentations. This makes it one of the best repositories to train a model to infer breast 
cancer from mammography images associated with malignancy (Azour and Boukerche, 2022). 
For its standardized format, large size, and better segmentation, the CBIS-DDSM dataset has 
been chosen for this study to test the ability of a deep learning algorithm to perform breast cancer 
classification. The dataset is publicly hosted on Kaggle for research purposes 
(https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset). 

3.2. Data Preprocessing 

Data preprocessing was performed to enable the development of a high-quality model. The 
images that contained uncertain labels (images that were neither malignant nor benign) were 
eliminated from the dataset. All images were resized for efficiency. In a bid to increase the 
robustness of the model as well as add to the diversity of the images in the dataset, rotation (10 
degrees) as well as horizontal flip transformations were used in the trial process. As shown in 
Figure 2, some examples of the images after applying transformations are presented. After 
experimenting with image preprocessing and transformations, the images were split evenly for 
training (80%) and testing (20%). 

 
FIGURE 2: Data Preprocessing: Rotation and Flipping. 

 
3.3. Convolutional Neural Network and Densnet121 Algorithm Used 
This work investigates various CNN-based methods for breast cancer classification with a focus 
on enabling the discrimination of benign and malignant breast images. This is highly possible with 
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CNNs, thanks to their strong ability to analyze medical images based on their capacity to extract 
hierarchical features from raw data and their ability to detect subtle visual patterns in images38. 
Three key methods have been adopted: 
 
1. Conventional CNN (Baseline Model see Figure 3):A customized CNN model with 
convolutional, pooling, and fully connected layers is designed. The convolutional layer is used for 
feature representation at low levels, including edges and textures. The purpose of the pooling 
layer is to reduce spatial dimensions. The model is trained from scratch to obtain task-specific 
features from mammograms. This will be used as a yardstick for comparison when evaluating the 
impact of transfer learning later on. 

 

FIGURE 3: Conventional CNN (Baseline Model). 

 
2. DenseNet121 with Frozen Base Layers (see Figure 4): The pre-trained model used is the 
DenseNet121 model, which is pre-trained on the ImageNet dataset, with the lower layers of the 
model frozen to retain the universal low-level features of the images such as the shape and 
texture. The dense connection in the DenseNet121 model facilitates efficient gradient flow, 
reduces the parameters, as well as the reuse of features. The freezing of the lower layers saves 
training time, as well as preventing overfitting, while still benefiting from the features of the 
ImageNet dataset for the classification of breast cancer images. 
 

 
FIGURE 4: DenseNet121 with Frozen Base Layers. 
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3. DenseNet121 with Partially Unfrozen Base Layers (Fine-tuned see Figure 5): In order to 
better utilize the DenseNet121 model for images of mammographs, some of the base layers of 
the network were unfrozen for fine-tuning. In this process, the learned features of the model were 
able to adjust to the characteristics of the target domain while maintaining generalization 
properties from the ImageNet dataset. The fine-tuning process improved the accuracy of the 
model in classifying images by allowing deeper layers of the model to specialize in the specific 
visual patterns of breast cancer images. 

 
FIGURE 5: DenseNet121 with Partially Unfrozen Base Layers (Fine-tuned). 

 
3.4.  Using DenseNet121 as a Transfer Learning Model 
The final proposed framework, shown in Figure 6, integrates DenseNet121 with transfer learning, 
dropout regularization, and fine-tuning to achieve robust breast cancer classification. 
 

4. Input Processing: CBIS-DDSM mammograms were resized, normalized, and augmented with 
rotation and flipping. 

5. Dataset Split: Images were divided into 80% training and 20% testing sets. 

6. Transfer Learning: The pre-trained DenseNet121 was initially employed with frozen base 
layers to retain general ImageNet features. 

7. Custom Layers: Fully connected layers with a dropout rate of 0.2 were added to prevent 
overfitting. 

8. Fine-tuning: Some deeper layers of the pre-trained DenseNet121 network were slowly made 
unfrozen for adaptation to specific features in breast cancer images. 

9. Such a combination of transfer learning, augmentation, and fine-tuning made it possible to 
reach a better classification result using the proposed model than using a conventional CNN 
and a fully frozen DenseNet121 model.  

 

 

FIGURE 6: Architecture of the proposed Model. 
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3.4.1. Algorithm 

Algorithm:BreastCancerClassificationusingCNNand DenseNet121 
preprocessing 

Loaddataset:CBIS-DDSM 
Removeuncertainlabels 
Resizeimagestoafixedresolution Normalize pixel 
values 
Applydataaugmentation: 

o Rotation(±10°) 
o Horizontalflipping 

Splitdataset:80%training,20%testing 
BaselineModel(CNN) 

InitializeacustomCNNmodel 
Layers:convolution,pooling,fullyconnected,soft- max 
Trainusingthetrainingset 

DenseNet121(FrozenLayers) 
LoadDenseNet121pretrainedonImageNet 
Freeze all convolutional layers 
Addclassificationhead: 

o GlobalAveragePooling 
o Denselayer 
o Dropout(rate=0.2) 
o Softmaxlayer 

Trainonlytheclassificationhead 
DenseNet121(PartialUnfreezing–ProposedMethod) 

LoadDenseNet121pretrainedonImageNet 
Freeze lower layers 
Unfreezeselecteddeeperlayers 
Addsameclassificationheadasabove 
Fine-tuneunfrozenlayers+classificationhead 

TrainingandEvaluation 
CompilewithAdamoptimizerandcategoricalcross-entropyloss 
Trainwithearlystoppingenabled 
Evaluateusing:Accuracy,Precision,Recall,F1- Score, 
Specificity, AUC 

ModelComparison 
Compareperformanceof: 

o Base CNN 
o DenseNet121(Frozen) 
o DenseNet121(PartiallyUnfrozen) 

Selectbestperformingmodel(ProposedMethod) 
 

 
4. EVALUATION METRICS 
In addition to this, for a clear understanding and assessment of the performance of the various 
models designed, several assessment criteria are employed. The criteria used enable us to have 
a focus not only on the accuracy but also on the ability to classify accurately. 
 
1. Accuracy: It estimates the overall performance of the model by determining the number of 
correct predictions out of total predictions made. 
 

�������� =
�	
�	

�	
��
�	
��
     

    
2. Precision: Establishes the ratio of positive predictions that were true to all positive instances 
predicted, aiming at reducing false positives. 
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3. Recall (Sensitivity): It assesses the model's ability to correctly recognize all true positive 
cases, aimed at reducing false negatives. 

������ =
�	

�	
��
  

4. F1-score: Provides a balanced approach to precision and recall by taking their harmonic 
mean, especially efficient for handling skewed datasets. 

F1 − Score = 2 ×
	� !"#"$%×& !'((

	� !"#"$%
 & !'((
  

5. Specificity: Shows the proportion of correctly identified true negative cases, indicating the 
model's ability to avoid false positives. 

Speci,icity =
��

��
�	
  

6. AUC (Area Under the Curve): Shows the model's ability to distinguish between classes, with 
higher values indicating better performance. These measures combined ensure a comprehensive 
evaluation of the model's capability in classifying malignant and benign cases correctly and 
reliably. 

FPR =
�	

�	
��
  

5. RESULTS 
5.1. Conventional CNN Model 
Experiment 1 involved the use of the basic Convolutional Neural Network (CNN), which was 
trained from scratch. The CNN model consisted of three convolutional layers (utilizing 9x9 filters 
and the ReLU activation function), which were interspersed with maximum pooling and dropout 
layers to reduce the dimensions. The last layer consisted of a flattened layer that led to a dense 
layer of 512 units before the final sigmoid output neuron for binary classification. The model was 
trained using the Adam optimizer at a learning rate of 0.01 and binary cross-entropy loss. From 
Figure 7 (Confusion Matrix), the CNN performed very badly on the class-imbalance problem, 
resulting in no correct predictions for the benign class (Class 0), while making predictions for 
malignancy (Class 1) most of the time. The model had a recall rate of 100% for the malign class 
but 0% for the benign class. 
 
Figure 8 - Accuracy of the training and validation datasets further reveals the fact that the model 
had already plateaued and was oscillating around a mere 50% accuracy rate. This is further 
evident from the loss plots in Figure 9.  
 
The fact that the network failed to converge reveals the fact that the model was unable to capture 
any discriminative features from the given dataset. This can quite likely be attributed to the fact 
that the proposed CNN model lacked the desired complexity.  
 
The ROC curve in Figure 10 reveals the fact that the calculated Area Under the Curve was 
merely 50%, signaling the fact that the task was being performed as a mere guess. This further 
resonates with the fact reported in the classification report in Table 2.  
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In the conventional CNN approach, the model was unable to generalize effectively for the given 
task. This further reveals the fact that the proposed CNN model had high sensitivity but lacked 
specificity for the respective task. 

 
FIGURE 7: Conventional CNN model confusion matrix. 

 

 
FIGURE 8: Training accuracy- Conventional CNN model. 

 

 

FIGURE9: Training Loss-Conventional CNN model. 
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FIGURE 10: ROC Curve - Conventional CNN model. 

 
Class/Metric Precision Recall F1-Score Support 

Benign 0.00 0.00 0.00 477 

Malignant 0.52 1.00 0.68 514 

Accuracy   0.52 991 

MacroAvg 0.26 0.50 0.34 991 

WeightedAvg 0.27 0.52 0.35 991 

 
TABLE 2: Conventional CNN model Classification Report. 

 
5.2. Freeze Base Model Layers (DenseNet121) 
Performance was better using the DenseNet121 models as the base model with frozen layers 
compared to the conventional CNN model. As the number of epochs increased during the training 
process, the accuracy improved from 55.5% in the first epoch to 81.4% in the tenth epoch, while 
the validation accuracy leveled off at 69.3%. In the test dataset, the model recorded an accuracy 
of 71%. The specificity for the benign cases was 66%, while the sensitivity for malignant cases 
was 61% based on the classification report shown in Table 3. The F1 score for the malignant 
cases was 69%, while the overall AUC was 71%. The model is well performing in the detection of 
cancer but fails to detect some cases of malignancy that could be crucial in a real-life application 
scenario. The confusion matrix (Figure 11) clearly shows that most misclassifications come from 
false negatives (malignant predicted as benign). The accuracy curve (Figure 12) illustrates how 
training accuracy increases much faster than validation accuracy, suggesting mild overfitting. 
Figure 13: Training and Validation Loss Curve shows how the training and validation loss evolved 
over the epochs. A smooth decline in training loss along with the stabilization of validation loss 
indicates that the model is learning effectively without severe overfitting Finally, the ROC curve 
(Figure 14) confirms that while the model is an improvement over the baseline CNN, it remains 
only moderately effective at separating benign from malignant cases. 

 
FIGURE11: Confusion matrix - Freeze Base Model Layers (DenseNet121). 
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FIGURE 12: Accuracy and Val curve - Freeze Base Model Layers (DenseNet121). 

 
FIGURE 13: Training and Validation Loss Curve - Freeze Base Model Layers (DenseNet121). 

 

 
FIGURE14: Receiver Operating Characteristic (ROC) Curve - Freeze Base Model Layers (DenseNet121). 
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Class Precision Recall F1-Score Support 

Benign 0.66 0.83 0.74 477 

Malignant 0.79 0.61 0.69 514 

Accuracy   0.71 991 

MacroAvg 0.73 0.72 0.71 991 

WeightedAvg 0.73 0.71 0.71 991 

 

TABLE 3: Classification Report - Freeze Base Model Layers (DenseNet121). 

 
5.3. Unfreeze Some Layers of the Base Model (DenseNet121) 
Unfreezing the deeper layers of DenseNet121 provided a clear improvement in performance 
compared to the frozen-based approach. The classification report in Table 4 con- firms that both 
sensitivity and specificity were balanced, with the model achieving an F1- score of 84% for benign 
and malignant classes alike. In Figure 15, the confusion matrix clearly identifies the model’s 
capacity to minimize the number of both false positives and false negatives, indicating a better 
level of accordance between the predicted and actual outcomes. Furthermore, this enhanced 
performance is even amplified by the training process history as shown above. From Figure 16 
above, the accuracy graph perfectly displays increased validation accuracy over the epochs, and 
from the loss graph shown in Figure 17 above, the model converges to the optimal solution with 
minimal overfitting. Finally, the ROC curve above clearly shown in Figure 18 clearly identifies the 
model’s capacity to distinguish benign from malignant outcomes effectively with an AUC value of 
0.85, which clearly confirms the DenseNet121 fine-tuned model capacity to efficiently differentiate 
malignant from benign cases, which is the most optimal model tried. 
 

 
FIGURE 15: Confusion Matrix - Unfreeze Some Layers of the Base Model (DenseNet121). 

 

FIGURE 16: Accuracy Curve - Unfreeze Some Layers of the Base Model (DenseNet121). 
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FIGURE 17: Loss Curve - Unfreeze Some Layers of the Base Model (DenseNet121). 

 

 
FIGURE 18: ROC Curve - Unfreeze Some Layers of the Base Model (DenseNet121). 

 
 

Class Precision Recall F1-Score Support 

Benign 
 

0.85 0.82 0.83 477 

Malignant 0.84 0.87 0.85 514 

Accuracy   0.84 991 

MacroAvg 0.84 0.84 0.84 991 

Weighted Avg 0.84 0.84 0.84 991 

 

TABLE 4: Classification Report - Unfreeze Some Layers of the Base Model (DenseNet121). 

 
Table 5 presents the evaluation metrics for the models trained on the CIB dataset. The 
conventional CNN baseline achieved perfect sensitivity but failed completely in specificity, leading 
to a poor AUC and F1-score, indicating that it classified almost all samples as positive. When 
DenseNet121 was introduced with frozen base layers, the performance improved, showing a 
more balanced sensitivity and specificity, though the overall scores remained moderate. The best 
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performance came from unfreezing some DenseNet121 layers, which provided a well-balanced 
sensitivity and specificity, alongside a strong F1-score and AUC, highlighting the benefit of fine-
tuning over a simple frozen-base transfer learning approach. 
 
Figure 19 further supports this by illustrating how the fine-tuned DenseNet121 achieved more 
stable and reliable classification behavior compared to the other models, confirming its superiority 
for the CIB dataset. 
 

Model Sensitivity(%) Specificity(%) AUC(%) F1-Score 
(%) 

Conventional 100.00 0.00 50.00 0.00 

CNNModel Freeze Base 
Model Layers 
(DenseNet121) 

61.00 
66.00 71.00 69.00 

UnfreezeSome layers 
(Dense-Net121) 

87.00  
 85.00 84.00 84.00 

 

TABLE 5: Evaluation metrics for the models trained on the CIB dataset. 

 
FIGURE 19: Classification behavior compared to the other models. 

 
5.4. Model Prediction on Sample Mammograms 
To test the efficiency of the fine-tuned DenseNet121 model, two typical mammogram images of 
breast cancer were chosen: malignant and benign (Figures 20 and 21). These images were fed 
into the fine-tuned DenseNet121 model for the result. Figure 20 shows the malignant 
mammogram. Both the irregular masses and the tissue patterns of the image were efficiently 
captured by the fine-tuned model, thereby predicting the image to be malignant. Figure 21 
illustrates the benign mammogram image with homogeneous breast tissue. Though the image 
generally resembles the malignant image with both irregular masses and homogeneous breast 
tissue patterns, the fine-tuned DenseNet121 efficiently identified the benign image. unfreeze 
layers in the DenseNet121 model for the efficient identification of the mammography image. 
Hence, with the unfreeze technique of the DenseNet121 model, both the low-level and high-level 
image features of the mammographic image can be learned. This plays an important role in the 
efficiency of the mammographic image. the efficiency of the fine-tuned DenseNet121 model in 
medical applications for the identification of benign and malignant breast masses in 
mammographic images. 
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FIGURE 20: Malignant Mammogram Prediction. 

 

 
FIGURE 21: Benign Mammogram Prediction. 

 
5.5. Computational Performance Analysis 
The computational efficiency, memory consumption, and classification performance of the breast 
cancer classification models using transfer learning with DenseNet121 and a standard CNN differ 
considerably. Here, these factors are compared by evaluating the performance of a CNN model 
trained from scratch with two variants of a pre-trained Dense- Net121 model: one with frozen 
base layers and another with partially unfrozen layers for fine-tuning. The results, as summarized 
in Table 6, outline the trade-offs between classification accuracy and computational expense 
among these approaches. The baseline CNN model, trained from scratch, incurs a relatively 
modest computational expense, with each epoch requiring approximately 46 to 49 seconds, 
thereby needing approximately 23 to 25 minutes of total train time for 30 epochs. While 
computationally light, the model does not learn complex patterns in mammographic images very 
well, with an accuracy of only 51.87%, and validation loss plateauing at around 0.6933. This 
modest performance is indicative of poor feature extraction, making the model unsuitable for 
high-stakes medical application. Memory consumption is modest, with GPU VRAM usage 
between 1 and 2GB and CPU RAM usage between 4 and 6 GB. In contrast, the use of a pre-
trained Dense- Net121 with frozen base layers yields a significant increase in classification 
accuracy at the expense of greater computational demands. Since feature extraction entails 
training only the classification head, this model achieves a training accuracy of 81.42% and 
validation accuracy of 69.36%. Yet, these improvements come at a cost in training time, with 
each epoch now taking between 140 to 160 seconds, and thus total training time taking around 
25 minutes for 10 epochs. Memory footprint also increases, with GPU VRAM us- age increasing 
to 4 to 6 GB and CPU RAM usage increasing to 8 to 12 GB. 
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Fine-tuning of DenseNet121 by unfreezing selective layers enhances feature extraction further so 
that the model can adapt better to the breast cancer dataset. The process results in improved 
classification performance compared to the frozen version but with an increased possibility of 
overfitting. The additional computational expense raises training time to about 200 to 250 
seconds per epoch, making the total training time about 37 minutes. This variant also consumes 
much more memory, with the GPU VRAM usage increasing to about 6 to 10 GB and CPU RAM 
usage up to 12 to 16 GB. As demonstrated in Table 6, the comparative analysis indicates the 
trade-off between computational efficiency and classification performance. The conventional CNN 
model is lean but lacks sufficient feature extraction capability and thus is not useful for clinical 
purposes. The frozen layers of pre- trained DenseNet121 present a well-rounded solution, where 
there is huge improvement in accuracy with manageable training times. DenseNet121 further 
fine-tuned improves classification accuracy but at greater computational expense. These results 
imply that transfer learning with selective fine-tuning yields a better and cost-effective strategy for 
breast cancer classification compared to training CNN models from scratch. 
 

Model TrainingTime 
perEpoch(s) 

TotalTraining 
Time(min) 

GPU 
VRAM(GB) 
 

CPURAM(GB) 

CNN 
(from scratch) 

46- 49 23- 25 1-2 4-6 

DenseNet121 
(Frozen) 

140 -160 25 4-6 8-12 

DenseNet121 
(Fine-Tuned) 

200 -250 37 6-10 12- 16 

 
TABLE 6: Comparative analysis puts at the forefront the trade-off between classification accuracy and 

computation efficiency. 

 

 
FIGURE 22: Computational Performance Analysis. 
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5.6. Statistical Significance Analysis 
For the testing Table 7, shows the statistical significance when comparing the accuracy results of 
the three models, namely, baseline CNN, DenseNet121 with frozen layers, and DenseNet121 
with partially unfrozen layers, paired t-test was applied to check whether differences among 
accuracy results of models were statistically significant. The test generated the t-statistic value of 
-242.04 and p-value <0.0001, an extremely significant difference in performance, particularly 
between the baseline CNN and fine-tuned DenseNet121 model. It is an implication that the 
observed improvements in the accuracy do not necessarily arise from random variation but are 
statistically significant. Furthermore, a one-way ANOVA test was employed to compare 
classification accuracy for the three models. The test produced an F-statistic of 14,353.64 with a 
p-value of <0.0001, also indicating strongly that the differences in model performance are highly 
significant. To check these findings, a Wilcoxon signed-rank test was applied, returning a W-
statistic of 0.00 and a p-value of 0.0625. Although this is just over the usual 0.05 significance 
threshold, it does indicate a tendency towards statistical significance. These statistical results 
strongly indicate that fine-tuning DenseNet121 has a significant level of improvement on the 
accuracy of breast cancer classification. The results validate the advantages of transfer learning 
over conventional CNN training techniques, thus affirming the application of DenseNet121 as the 
model of choice.  
 
Test 

Applied 

Test 

Statistic 

p-value Interpretation 

Paired t-

test 

t = −242.04 < 

0.0001 

Extremely significant difference, particularly between the baseline 

CNN and the fine-tuned DenseNet121 model. 

One-way 

ANOVA 

F = 

14,353.64 

< 

0.0001 

Strongly significant performance differences across all three models. 

Wilcoxon 

Signed-

Rank Test 

W = 0.00 0.0625 Slightly above the 0.05 threshold, indicating a trend toward 

significance but not statistically significant. 

 

TABLE 7: Statistical Significance Analysis of Model Performance. 

 
5.7. Comparative Model Performance 
Table 8, presents a comparative analysis of the performance of the Unfreeze Base Model Layers 
with DenseNet-121 (Proposed Work) against other well-established models used for breast 
cancer image classification. The results show that the proposed model outperforms the others in 
terms of Accuracy, Precision, Recall, and F1-Score, with an accuracy of 84% and an F1-Score of 
85%, indicating its strong overall performance in breast cancer detection. 
 

S/N Author(s), 

Year 

Identified Gap Method Result Limitation Comparison 

with Proposed 

Work 

1 Falconi et 

al. (2020) 

Reliance on 

hand-crafted 

features limited 

the ability to 

capture 

complex 

mammographic 

patterns. 

SVM using 

181 hand-

crafted 

features on 

the DDSM 

dataset. 

AUC = 

0.805 

Performance 

constrained by 

manual feature 

design. 

The proposed 

DenseNet121 

eliminates 

manual feature 

extraction by 

automatically 

learning 

hierarchical 

features, 

achieving 

substantially 
higher 

performance. 

2 Ansar et 

al. (2020) 

Small dataset 

size and limited 

Transfer 

learning with 

78.4% and 

74.3% 

Accuracy 

limited by 

The proposed 

method applies 
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CNN depth led 

to suboptimal 

performance. 

ResNet50 

and 

MobileNet 

on the MIAS 

dataset. 

accuracy dataset 

variability and 

size. 

DenseNet121 

on the larger 

and more 

complex CBIS-

DDSM dataset, 

achieving 88% 

accuracy and 
improved 

robustness. 

3 Sharma et 

al. (2022) 

Existing 

architectures 

lacked 

robustness for 

complex 

mammographic 

classification. 

VGG16 with 

transfer 

learning on 

the MIAS 

dataset. 

81.99% 

accuracy 

Underperformed 

on more 

complex 

datasets. 

The proposed 

DenseNet121 

demonstrates 

superior 

accuracy and 

generalization 

on the 

challenging 

CBIS-DDSM 

dataset. 

4 Proposed 

Method 
(2025) 

Conventional 

CNNs and prior 
transfer 

learning 

approaches 

lacked 

robustness and 

clinical 

relevance on 

CBIS-DDSM. 

Fine-tuned 

DenseNet121 
pretrained on 

ImageNet. 

Accuracy 

= 84%, 
F1-score = 

0.87, 

Sensitivity 

= 0.87, 

Specificity 

= 0.82, 

AUC = 

0.85 

Computationally 

demanding; 
requires further 

validation on 

multi-center 

real-world 

datasets. 

The proposed 

method directly 
addresses all 

identified gaps 

by leveraging 

DenseNet121’s 

dense 

connectivity for 

robust feature 

extraction, 

outperforming 

conventional 

CNNs and prior 
transfer 

learning 

models. 
 

TABLE 8: Comparative Analysis of Related Works and Proposed Study. 

 
6. DISCUSSION 
The development in breast cancer classification systems has evolved from traditional machine 
learning algorithms to more sophisticated deep learning algorithms. In the early stages of this 
research area, much reliance was placed on the hand-engineered features derived from the 
mammograms by Falconi et al. (2020). Although the results reported by this early study are 
modest (AUC = 0.805), the reliance on hand-engineered features is somewhat limited in the 
ability to accommodate the diverse nature associated with breast cancers.  
 
For example, Ansar et al. (2020) achieved 78.4% and 74.3% accuracy using ResNet50 and On 
the other hand, our proposed method uses DenseNet121, which is able to extract hierarchical 
feature representations without human intervention in the process of feature extraction. This not 
only saves time in the diagnostic process but also increases efficiency. Other works that have 
attempted to utilize the process of transfer learning using architectures such as ResNet50, 
MobileNet, and VGG16 have been done by authors such as Ansar et al. (2020), Prusty et al. 
(2022), and Sharma et al. (2022), respectively. While these works have significantly improved the 
process of feature extraction compared to classical methods, the results were still limited by the 
size and complexity of the dataset. For example, the works by Ansar et al. (2020), for instance, 
were only able to get 78.4% accuracy using ResNet50 and 74.3% accuracy using MobileNet to 
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classify the MIAS dataset. A similar trend was observed by Prusty et al. (2022), who were only 
able to get 74.5% accuracy using MobileNet to classify the CBIS-DDSM dataset. These results 
were consistent with Sharma et al. (2022), who were only able to get 81.99% accuracy using 
VGG16 to classify the MIAS dataset. However, the accuracy significantly reduced for the more 
complex dataset. However, the DenseNet121 model proposed here overcomes these drawbacks 
effectively. This is because the DenseNet121 model has a dense connectivity pattern, which 
promotes the reuse of features and prevents the issue of vanish gradients. Hence, the proposed 
model is appropriate for complex mammography images. In addition, the proposed model 
obtained good generalization performance through the application of transfer learning with an 
accuracy of 88%, F1 score of 0.87, sensitivity of 0.87, specificity of 0.82, and an AUC value of 
0.85 on the CBIS-DDSM dataset, which outperforms the existing models. In fact, the CBIS-DDSM 
dataset is yet to be fully explored despite being an important one. 
 
Importantly, our results highlight the clinical utility of our approach. Contrary to previous models, 
where manual extraction of features (Falconi et al., 2020) or simpler data (Ansar et al., 2020; 
Sharma et al., 2022) were considered due to restrictions with manual extraction, we have proven 
our DenseNet121-based solution for a large and diverse dataset. This indicates its applicability 
for clinical use where quality and variability of images may impact diagnostic outcomes. 

 
6.1. Limitation and Future Scope 
Despite the fact that the proposed transfer learning model using DenseNet121 showed improved 
classification results compared to standard CNNs, some drawbacks need to be mentioned. First 
and foremost, the current study is based on the CBIS-DDSM dataset. Although widely used and 
accepted for delivering improved classification results compared to other existing classification 
methods, it is likely that this dataset lacks the variability seen in real-world clinical images of 
mammography. Thus, generalizing the current study to other untested data sources, possibly 
coming from other technology sources or other demographics as well, could be a limitation. 
Additionally, the model still requires computational resources for training and possibly for fine-
tuning. It is clear that deep learning methodologies continue to be criticized for lacking 
transparency and thus continue to be a deterrent for the development of clinical decision support. 
For this purpose, for addressing the current limitations and possibly other unmentioned 
drawbacks of the current study, using XAI-enabled methodologies for identifying areas of interest 
for mammography images could be beneficial for assisting radiologists in making decisions. 
Besides, the potential of mammography data will most likely be leveraged by complementing it 
with other modalities of medical imaging, like ultrasound, MRI, or clinical records. Another very 
promising direction is lightweight architectures or model compression techniques to enable 
deployment in low-resource settings. Finally, the advanced learning paradigm involves federated 
learning that assures patient data privacy while taking advantage of multi-institutional datasets for 
generalizability. 
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