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Abstract

Breast cancer is a prevalent type of malignancy in females wherein there is uncontrolled cell
growth within the breast tissues. Proper identification and classification are the basis for effective
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treatment and management. There has been potential in increasing classification accuracy as
well as support for early diagnosis through more recent advancements with deep learning
models, particularly when utilized in medical imaging. This research aims to enhance the
precision of breast cancer classification by comparing deep learning model performance. Python
and deep learning frameworks were employed in developing and comparing models for breast
cancer classification using the Curated Breast Imaging Subset of the Digital Database for
Screening Mammography (CBIS-DDSM) dataset, which includes Digital Imaging and
Communications in Medicine (DICOM) mammography images obtained through Kaggle. The data
was quality-assured and made uniform. A conventional Convolutional Neural Network (CNN) was
first applied for binary classification. Transfer learning was implemented with the DenseNet121
model that was pre-trained on ImageNet to improve performance. Layers of the model were
frozen, and classification layers were included as custom. Fine-tuning was accomplished by
unfreezing certain layers to enhance the ability of the model to discriminate between malignant
and benign cases. The conventional CNN model achieved accuracy of 51.87%, weighted F1-
score of 0.35, precision of 0.27, and recall of 0.52. Following transfer learning with DenseNet121,
accuracy was improved to 71%, weighted F1-score of 0.71, Specificity of 0.83, Sensitivity of 0.61
and AUC of 0.7. Fine-tuning resulted in an end accuracy of 88%, with weighted F1-score,
Sensitivity of 0.87, Specificity of 0.82, precision at 0.87 and Area Under the Curve (AUC) at
0.85.This study highlights the effectiveness of DenseNet121 combined with transfer learning for
improving breast cancer classification accuracy using DICOM images from the CBIS-DDSM
dataset, contributing to more reliable early detection and treatment strategies.

Keywords: Breast Cancer, Convolutional Neural Network (CNN), DenseNet121, Transfer
Learning.

1. INTRODUCTION

Breast cancer is the most prevalent type of malignancy found globally, notably in women
(Yiallourou, 2023; Smolarz et al., 2022; Cuthrell & Tzenios, 2023). It is defined by the
uncontrollable reproduction of cellular tissues found inside the breast tissues. The condition can
develop into tumors (Wang et al., 2024; Akinpelu et al., 2024; Akl & Ahmed, 2024; Ojo et al.,
2025; Hong et al., 2025). The earlier the detection of the malignant cells present in the body, the
more promising the treatment is for the patient (Xiong et al., 2025). Nonetheless, the condition
may be experienced by the patient without symptoms at all until the point of malignancy.

Despite its importance as a diagnostic imaging tool, mammography image analysis is a time-
consuming process that requires human expertise, resulting in possible inaccuracies (Dave et al.,
2025; Santos et al., 2024). In an effort to overcome these inconveniences, Computer-Aided
Diagnostic (CAD) software was conceived to support and help radiologists identify and classify
cancer accurately (Hussain et al., 2024). This aid utilizes machine learning, specifically deep
learning, to evaluate images.

Convolutional Neural Networks (CNNs) are one of the most popular deep learning models for the
assessment of medical images because of their capability to detect complicated patterns in
images (Zangana et al.,, 2024; Mienye et al., 2025; Takahashi et al., 2024; Manjunatha &
Mahendra, 2024). However, regular CNN models have limitations with complicated images like
the DICOM mammography images (Sharafaddini et al., 2024; Salehi et al., 2023). However, the
need to train models using a large number of images and prevent vanishing gradients has
promoted the concept of transfer learning, which can work efficiently even while handling fewer
labeled images (Chutia et al., 2024). DenseNet121, one of the CNN models designed using the
concept of dense connectivity, turns out to be one of the most accurate models for such
applications and avoids complications such as vanishing gradients (Blahova et al., 2025).

The current study examines the capability of the DenseNet121 architecture with the use of
transfer learning for the classification task of breast cancer based on mammography images. The
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results derived from the proposed method are then compared to a basic CNN architecture to
ascertain enhancements made within the context of accuracy, recall, precision, and overall
classification performance.

2. LITERATURE REVIEW

The development of Deep Learning algorithms that perform significantly better than traditional
ones has completely altered the landscape of research work done in the classification of
mammography and histopathology images. Traditional approaches involved the use of classical
Machine Learning models such as Support Vector Machines (SVMs). The model used manually
designed features, including texture and mass properties. For instance, the work done by Falconi
et al. in 2020 highlighted the applicability of the SVM approach to the DDSM database, where
they extracted a total of 181 features, resulting in an AUC of 0.805. The approach showed
promise but was limited by the need to design features manually, which was not particularly
successful in the case of medical images that have complex properties. The development in
Deep Learning, specifically Convolutional Neural Networks, introduced a new approach that
exploited automatic feature extraction. The adoption of transfer learning approaches was also
early and greatly appreciated in the field of medical imaging, as annotated datasets are limited in
these fields. For example, learning was transferred using ResNet50 and MobileNet by Ansar et
al. (2020); accuracies of 78.4% and 74.3% were consequently obtained for the classification task
on the MIAS dataset. The same was adopted by Prusty et al. (2022) with the use of MobileNet,
and accuracies of 86.8% and 74.5% were obtained for the DDSM and CBIS-DDSM datasets,
respectively. Additionally, accuracy of 81.99% was obtained by Sharma et al. (2022) using
VGG16 on the MIAS dataset, showing its applicability despite its limitations.

However, aside from mammography, the effectiveness of transfer learning has also been
validated in other applications within the field of medical imaging. For example, Kaur and
Mahajan (2025) were able to reach a recognition accuracy of 98.53% for the classification of
brain tumors through the use of ResNet152 combined with GoogleNet, exemplifying the
applicability and efficacy of CNNs across various tasks and datasets. Another example is given
by Zahra et al. (2023), who was able to reach an accuracy rate of 98.4% utilizing the features
offered by the use of DenseNet, noting the significant impact and need for image preprocessing
to improve performance within a specific class. Elkorany et al. (2023) further improve these
findings by combining the features gathered from multiple CNNs and then utilizing other machine
learning algorithms such as KNN, SVM, as well as RF to gather an accuracy rate of 94.5% within
the MIAS image repository. This was further supported by Chakravarthy et al. (2024).

More recent works aim to optimize CNN architectures and further improve models. Meenalochini
and Ramkumar (2024) used EfficientNet-B4 and reached 98.46% for INbreast. Laishram and
Rabidas (2024) used image preprocessing methods and implemented Genetic Algorithms, and as
a result, they enhanced classification accuracy to 83.5% on INbreast. Lee et al. (2017)
implemented a combination of machine learning and deep learning approaches and reached
83.61% on mini-MIAS. Transfer learning models utilizing DenseNet121 attracted recent attention.
Laishram and Rabidas (2024) implemented DenseNet121 on BreakHis histopathological images
and reached 96.09% on 100x magnified images. Bello et al. (2024) further optimized
DenseNet121 for skin lesion classification. They implemented additional dense layers with leaky
ReLU activation and outperformed EfficientNetBO, ResNet34, and VGG16. Ahad et al. (2024)
illustrated that although CNNs perform well independently, their combination can further improve
prediction and reached 99.94% using an ensemble of six models including DenseNet121,
ResNet18, and MobileNetV2. Improved preprocessing and data augmentation methods were
proven to further improve models performance. Seneng et al. (2025) utilized a combination of
techniques such as CLAHE, Median Filtering, and Wavelet Transform and found VGG19 to reach
98.04% accuracy with DWT-enhanced mammography images, although issues of imbalance
were shown to exist. Chugh et al. (2024) made a comparison between transfer learning and
traditional approaches to machine learning. Their study found that transferred CNNs (MobileNet,
ResNet50, and DenseNet169) performed well and had around 97% accuracy, learning around
4% better than SVM and RandomForest. Lastly, Taifi et al. (2025) adjusted DenseNet121,
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DenseNet201, and MobileNetV2 models by freezing some of the initial convolutional blocks and
used GELUs as activation functions. Their optimized models showed 97% to 99.6% accuracy on
the MIAS, INbreast, and DDSM databases, and that improvements were statistically proven using
paired t-tests.

Despite the significant achievements of using transfer learning through advanced CNN
architectures like DenseNet, VGG, ResNet, and EfficientNet for the diagnosis of breast cancer,
some research loopholes still need to be addressed. Current studies mainly focused on the
comparison of various pre-trained architectures of deep learning without giving much importance
to the comparison of the aforementioned architectures with conventional CNN architectures.
Moreover, although various datasets including BreakHis and MIAS have achieved significant
attention from the research community, little attention has been paid to the mammography CBIS-
DDSM dataset, although its diagnostic challenges are higher. In addition to these limitations,
although some studies through architectural improvement and ensemble methods demonstrated
near-perfect accuracy in their respective results, the proposed models featured complex
architectures that reduce their practical applications in real-world scenarios. In the proposed
approach, an exhaustive comparison between the baseline CNN architecture and the transfer
learning method using the DenseNet121 model for the mammography CBIS-DDSM dataset
would address these limitations. It would clearly reveal the significant improvements achieved
through transfer learning to prove the authenticity and importance of DenseNet121 in breast
cancer detection. Table 1 shows the overall summary of the prior art works in the proposed area.

S/N | Author(s), Identified Gap Method Result Limitation
Year
1 Falconi et al. | Classical ML | SVM with 181 | AUC = 0.805 Dependent  on
(2020) models required | handcrafted manual feature
manual feature | features on extraction;
design DDSM limited ability to
capture complex
patterns
2 Ansar et al. | Limited Transfer 78.4% and | Small dataset
(2020) exploration  of | learning using | 74.3% size; moderate
deep learning in | ResNet50 and | accuracy performance
mammogram MobileNet on
classification MIAS
3 Prusty et al. | Need for | Pre-trained 86.8% and | Dataset
(2022) improved MobileNet on | 74.5% variability
accuracy across | DDSM and | accuracy affected
datasets CBIS-DDSM performance
4 Sharma et al. | Traditional VGG16 on | 81.99% Limited
(2022) CNNs limited by | MIAS dataset | accuracy scalability across
feature depth datasets
5 Kaur and | Applications ResNet152 98.53% Performance
Mahajan beyond and recognition may not
(2025) mammograms GooglLeNet on | rate generalize to
underexplored brain  tumor heterogeneous
MRI datasets
6 Zahra et al. | Impact of | DenseNet with | 98.4% Dataset-specific;
(2023) preprocessing preprocessing | accuracy generalizability
International Journal of Computer Science & Security (IJCSS), Volume (19) : Issue (5) : 2025 237

ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Blessing Olorunfemi, Adewale Ogunde, Adenike Adeniji-Sofoluwe,

Alex Pearson, Funmilayo Olopade & Benjamin Aribisala

Bosede Oguntunde, Samson Arekete,

on DL models unclear
unclear
7 Elkorany et | Single CNN | Multi-CNN 94.5% Increased
al. (2023) models prone to | feature accuracy complexity;
limitations extraction  + interpretability
KNN,  SVM, challenges
RF
8 Chakravarthy | Hybrid feature | Inception-V3, 98% accuracy | High
et al. (2024) | pipelines ResNet50, computational
underexplored AlexNet overhead
features +
SVM
9 Meenalochini | Need to balance | EfficientNet- 98.46% Requires high
and CNN depth and | B4 on | accuracy computational
Ramkumar efficiency INbreast resources
(2024)
10 | Laishram Feature Genetic 83.5% Lower
and Rabidas | optimization algorithms accuracy performance
(2024) limited with than DL
preprocessing baselines
11 | Lee et al. | Pure DL models | Hybrid ML + | 83.61% Modest
(2017) struggled with | DL on mini- | accuracy performance;
dataset MIAS dataset
variability constraints
12 | Potsangbam | DenseNet121 DenseNet121 | 96.09% Limited to
and Devi | underexplored on BreakHis | accuracy histopathological
(2024) in dataset (100x images
histopathology magnification)

13 | Bello et al. | Need to | DenseNet121 | Outperformed | Increased model
(2024) optimize with added | EfficientNetBO, | complexity
DenseNet121 dense layers | ResNet34,

and VGG16
LeakyRelLU
14 | Ahad et al. | Individual CNNs | Ensemble of | 99.94% Computationally
(2024) underperformed | six CNNs | accuracy expensive;
including reduced
DenseNet121 interpretability
15 | Seneng et al. | Role of | VGG19  with | 98.04% Dataset
(2025) preprocessing in | CLAHE, accuracy imbalance issues
CNNs unclear median
filtering,
wavelets
16 | Chugh et al. | Limited MobileNet, ~97% CNN | Requires large
(2024) comparison ResNet50, accuracy; ~4% | datasets
between DenseNet169 | higher than ML
classical ML | vs. SVM/RF
and CNNs
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17 | Taifi et al. | Need for | Modified 97-99.6% High training and
(2025) improved fine- | DenseNet121, | accuracy on | tuning complexity
tuning strategies | DenseNet201, | MIAS,
MobileNetV2 INbreast,
with GELU DDSM

TABLE 1: Summary of Related Works on Breast Cancer Classification

3. MATERIALS AND METHODS

In order to determine the effectiveness of deep learning models for the classification of breast
cancer images, the study adopts an experimental research design. The study proposes a
comparative study of a regular Convolutional Neural Network (CNN) model versus a transfer
learning model utilizing a DenseNet121 model. In relation to the above, a CNN model and a
transfer learning model utilizing a DenseNet121 model were used for the classification of images
from the CBIS-DDSM database to yield better results for the diagnosis of breast cancer. A step-
by-step process of the study is presented in Figure 1.

Starting with the CBIS-DDSM dataset, which is downloaded from the Kaggle platform and initially
converted using various preprocessing methods like rotation, augmentation, normalization, and
scaling to make it ready for the process of training models. In an attempt to robustly train and test
the models, the dataset is split equally into the training and testing data sets. In an effort to
construct a standard for comparison, the initial model built is a standard CNN binary classifier
(benign vs. malignant) model. Subsequently, the DenseNet121 model, an advanced deep
learning model well-known for being remarkably proficient at the task of extracting relevant
features from the given images, is introduced. On the back of the pre-trained image net weights,
the DenseNet121 model begins with the freezing of the initial layers and the subsequent training
of the custom-made classification layers.

Afterwards, selective unfreezing of layers of DenseNet121 was performed for the subsequent
fine-tuning process to improve the model’s adaptability to the distinct characteristics of the breas:t
cancer images. The models were trained, validated, and tested for evaluation using accuracy,
precision, recall rate (or Sensitivity), specificity rate, F1 scores, and the Area Under the Curve
(from the Receiver Operating Characteristic Curve), for the comparison of standard CNNs to
DenseNet121 for the use of Transfer Learning.

Data split

Freeze base Unfreze some
Conventional model layers layers of the

CNN base model
| Denseneti21 e

Performance
Evaluation

FIGURE 1: Research implementation diagram.
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3.1. Description of Data

For this analysis, the Curated Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM) is utilized. The DDSM is a contemporary subset that is generated
from the original DDSM. The original DDSM database includes 2,620 mammographic image
scans labeled as normal, benign, or malignant and are all pathologically confirmed. The dataset
in the CBIS-DDSM is ground-truth verified by an experienced observer and is considered to be
the ideal data set for the development of computer-aided systems for decision-making purposes
due to the appropriateness of the data set and the fact that it is pathologically verified.

The datasets include JPEG images, incorporating left and right breast scans with both
Mediolateral Obliqgue (MLO) and craniocaudal (CC) views. Compared to other openly accessible
datasets on mammography images such as MIAS, INbreast, and BCDR, there exist numerous
benefits associated with CBIS-DDSM that range from large annotated ROIs to DICOM-based
truth segmentations. This makes it one of the best repositories to train a model to infer breast
cancer from mammography images associated with malignancy (Azour and Boukerche, 2022).
For its standardized format, large size, and better segmentation, the CBIS-DDSM dataset has
been chosen for this study to test the ability of a deep learning algorithm to perform breast cancer
classification. The dataset is publicly hosted on Kaggle for research purposes
(https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset).

3.2.Data Preprocessing

Data preprocessing was performed to enable the development of a high-quality model. The
images that contained uncertain labels (images that were neither malignant nor benign) were
eliminated from the dataset. All images were resized for efficiency. In a bid to increase the
robustness of the model as well as add to the diversity of the images in the dataset, rotation (10
degrees) as well as horizontal flip transformations were used in the trial process. As shown in
Figure 2, some examples of the images after applying transformations are presented. After
experimenting with image preprocessing and transformations, the images were split evenly for
training (80%) and testing (20%).

Rotation (+10°) Horizontal Flip

Rotation (+10°) Horizontal Flip

FIGURE 2: Data Preprocessing: Rotation and Flipping.

3.3.Convolutional Neural Network and Densnet121 Algorithm Used
This work investigates various CNN-based methods for breast cancer classification with a focus
on enabling the discrimination of benign and malignant breast images. This is highly possible with
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CNNs, thanks to their strong ability to analyze medical images based on their capacity to extract
hierarchical features from raw data and their ability to detect subtle visual patterns in images38.
Three key methods have been adopted:

1. Conventional CNN (Baseline Model see Figure 3):A customized CNN model with
convolutional, pooling, and fully connected layers is designed. The convolutional layer is used for
feature representation at low levels, including edges and textures. The purpose of the pooling
layer is to reduce spatial dimensions. The model is trained from scratch to obtain task-specific
features from mammograms. This will be used as a yardstick for comparison when evaluating the
impact of transfer learning later on.

Baseline CNN Architecture
(Baseline Path)

Conv(3x, MaxPool Conv(3 MaxPool Global- Dense(128) Dense(1) Dense1
+

64) + RelLU (2x2) 3,8.128) (2x2) AvgPool o *
Dropout(0.5 Softmax Softmax

FIGURE 3: Conventional CNN (Baseline Model).

2. DenseNet121 with Frozen Base Layers (see Figure 4): The pre-trained model used is the
DenseNet121 model, which is pre-trained on the ImageNet dataset, with the lower layers of the
model frozen to retain the universal low-level features of the images such as the shape and
texture. The dense connection in the DenseNet121 model facilitates efficient gradient flow,
reduces the parameters, as well as the reuse of features. The freezing of the lower layers saves
training time, as well as preventing overfitting, while still benefiting from the features of the
ImageNet dataset for the classification of breast cancer images.

DenseNet121 Transfer Learning Architecture (Your Core Method)

Input | Stem . Dense Block 1 4 Dense Block 2 . Dense Block 3
224x%224%3 Conv + Pool + Transition + Transition + Transition
-
__-F._._-...--"""-_
‘..--""""—-_

Dense Block 4 (Top)
— Unfrozen during fine-tuning —

Classifier Head
GlobalAvgPoal B od Dense{256) + Dropout(0.5)
Dense(1) + Sigmoid

Stage 1 (Feature Extractor): Freeze all DenseNet121 layers; train head.
Stage 2 (Fine-tune): Unfreeze top block(s); very low LR; class weighting.

FIGURE 4: DenseNet121 with Frozen Base Layers.

International Journal of Computer Science & Security (IJCSS), Volume (19) : Issue (5) : 2025 241
ISSN: 1985-1553, https://www.cscjournals.org/journals/|JCSS/description.php




Blessing Olorunfemi, Adewale Ogunde, Adenike Adeniji-Sofoluwe, Bosede Oguntunde, Samson Arekete,
Alex Pearson, Funmilayo Olopade & Benjamin Aribisala

3. DenseNet121 with Partially Unfrozen Base Layers (Fine-tuned see Figure 5): In order to
better utilize the DenseNet121 model for images of mammographs, some of the base layers of
the network were unfrozen for fine-tuning. In this process, the learned features of the model were
able to adjust to the characteristics of the target domain while maintaining generalization
properties from the ImageNet dataset. The fine-tuning process improved the accuracy of the
model in classifying images by allowing deeper layers of the model to specialize in the specific
visual patterns of breast cancer images.
Fine-tuning Strategy & Training Schedule

Stage 1: ¥ ;
L Stage 2
Freeze bz
reeze base Unfreeze tap blocks

Train head
LR=1&-3 LR=1&-4

Early stopping
on val AuC

Il ] 1 Il
18 L | 1
[ [

Epoch 0 Epoch 10 Epoch 20 Epoch 30

Regularization: Augmentation T {Mip/rotate/clabhe) = Class Wt‘lc_]lll..'. = Dropout 0.5

FIGURE 5: DenseNet121 with Partially Unfrozen Base Layers (Fine-tuned).

3.4. Using DenseNet121 as a Transfer Learning Model
The final proposed framework, shown in Figure 6, integrates DenseNet121 with transfer learning,
dropout regularization, and fine-tuning to achieve robust breast cancer classification.

4. Input Processing: CBIS-DDSM mammograms were resized, normalized, and augmented with
rotation and flipping.

5. Dataset Split: Images were divided into 80% training and 20% testing sets.

6. Transfer Learning: The pre-trained DenseNet121 was initially employed with frozen base
layers to retain general ImageNet features.

7. Custom Layers: Fully connected layers with a dropout rate of 0.2 were added to prevent
overfitting.

8. Fine-tuning: Some deeper layers of the pre-trained DenseNet121 network were slowly made
unfrozen for adaptation to specific features in breast cancer images.

9. Such a combination of transfer learning, augmentation, and fine-tuning made it possible to

reach a better classification result using the proposed model than using a conventional CNN

and a fully frozen DenseNet121 model.

Data Acquisition

Froeazing Layors e
l')r:;r’r_:inr Layaears

1 x 1024 layers +
relu activation

Dropout layer
(Dropout rate = 0.2) wwheaen ovaerfitting themn fine-
l tuneae the mMmodel (Densraet129)

-~

A x 1024 layars +
reflu activation

Evaluate overftting

Evaluate overf-
ittinmng

Classification

FIGURE 6: Architecture of the proposed Model.
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3.4.1. Algorithm

Algorithm:BreastCancerClassificationusingCNNand DenseNet121
preprocessing
Loaddataset:CBIS-DDSM
Removeuncertainlabels
Resizeimagestoafixedresolution Normalize pixel
values
Applydataaugmentation:
o Rotation(£10°)
o Horizontalflipping
Splitdataset:80%training,20%testing
BaselineModel(CNN)
InitializeacustomCNNmodel
Layers:convolution,pooling,fullyconnected,soft- max
Trainusingthetrainingset
DenseNet121(FrozenLayers)
LoadDenseNet121pretrainedonimageNet
Freeze all convolutional layers
Addclassificationhead:
o GlobalAveragePooling
o Denselayer
o Dropout(rate=0.2)
o Softmaxlayer
Trainonlytheclassificationhead
DenseNet121(PartialUnfreezing—ProposedMethod)
LoadDenseNet121pretrainedonimageNet
Freeze lower layers
Unfreezeselecteddeeperlayers
Addsameclassificationheadasabove
Fine-tuneunfrozenlayers+classificationhead
TrainingandEvaluation
CompilewithAdamoptimizerandcategoricalcross-entropyloss
Trainwithearlystoppingenabled
Evaluateusing:Accuracy,Precision,Recall,F1- Score,
Specificity, AUC
ModelComparison
Compareperformanceof:
o Base CNN
o DenseNet121(Frozen)
o DenseNet121(PartiallyUnfrozen)
Selectbestperformingmodel(ProposedMethod)

4. EVALUATION METRICS

In addition to this, for a clear understanding and assessment of the performance of the various
models designed, several assessment criteria are employed. The criteria used enable us to have
a focus not only on the accuracy but also on the ability to classify accurately.

1. Accuracy: It estimates the overall performance of the model by determining the number of
correct predictions out of total predictions made.

TP+FP

Accuracy = ——
y TP+TN+FP+FN

2. Precision: Establishes the ratio of positive predictions that were true to all positive instances
predicted, aiming at reducing false positives.
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TP
TP+FP

Precision =

3. Recall (Sensitivity): It assesses the model's ability to correctly recognize all true positive
cases, aimed at reducing false negatives.

TP
TP+FN

Recall =

4. F1-score: Provides a balanced approach to precision and recall by taking their harmonic
mean, especially efficient for handling skewed datasets.

PrecisionxRecall
F1 — Score = 2 X

Precision+ Recall

5. Specificity: Shows the proportion of correctly identified true negative cases, indicating the
model's ability to avoid false positives.

TN
TN+FP

Specificity =

6. AUC (Area Under the Curve): Shows the model's ability to distinguish between classes, with
higher values indicating better performance. These measures combined ensure a comprehensive
evaluation of the model's capability in classifying malignant and benign cases correctly and
reliably.

FP
FP+TN

FPR =

5. RESULTS

5.1. Conventional CNN Model

Experiment 1 involved the use of the basic Convolutional Neural Network (CNN), which was
trained from scratch. The CNN model consisted of three convolutional layers (utilizing 9x9 filters
and the RelLU activation function), which were interspersed with maximum pooling and dropout
layers to reduce the dimensions. The last layer consisted of a flattened layer that led to a dense
layer of 512 units before the final sigmoid output neuron for binary classification. The model was
trained using the Adam optimizer at a learning rate of 0.01 and binary cross-entropy loss. From
Figure 7 (Confusion Matrix), the CNN performed very badly on the class-imbalance problem,
resulting in no correct predictions for the benign class (Class 0), while making predictions for
malignancy (Class 1) most of the time. The model had a recall rate of 100% for the malign class
but 0% for the benign class.

Figure 8 - Accuracy of the training and validation datasets further reveals the fact that the model
had already plateaued and was oscillating around a mere 50% accuracy rate. This is further
evident from the loss plots in Figure 9.

The fact that the network failed to converge reveals the fact that the model was unable to capture
any discriminative features from the given dataset. This can quite likely be attributed to the fact
that the proposed CNN model lacked the desired complexity.

The ROC curve in Figure 10 reveals the fact that the calculated Area Under the Curve was
merely 50%, signaling the fact that the task was being performed as a mere guess. This further
resonates with the fact reported in the classification report in Table 2.

International Journal of Computer Science & Security (IJCSS), Volume (19) : Issue (5) : 2025 244
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Blessing Olorunfemi, Adewale Ogunde, Adenike Adeniji-Sofoluwe, Bosede Oguntunde, Samson Arekete,

Alex Pearson, Funmilayo Olopade & Benjamin Aribisala

In the conventional CNN approach, the model was unable to generalize effectively for the given
task. This further reveals the fact that the proposed CNN model had high sensitivity but lacked
specificity for the respective task.
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FIGURE 7: Conventional CNN model confusion matrix.

Training Accuracy over Epochs

— Training Accuracy

4] s 10 15 20 25 30
Epochs

FIGURE 8: Training accuracy- Conventional CNN model.
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Training Loss over Epochs

Training Loss

8
FIGURE 10: ROC Curve - Conventional CNN model.
Class/Metric Precision Recall FI-Score Support
Benign 0.00 0.00 0.00 477
Malignant 0.52 1.00 0.68 514
Accuracy 0.52 991
MacroAvg 0.26 0.50 0.34 991
WeightedAvg 0.27 0.52 0.35 991

TABLE 2: Conventional CNN model Classification Report.

5.2. Freeze Base Model Layers (DenseNet121)

Performance was better using the DenseNet121 models as the base model with frozen layers
compared to the conventional CNN model. As the number of epochs increased during the training
process, the accuracy improved from 55.5% in the first epoch to 81.4% in the tenth epoch, while
the validation accuracy leveled off at 69.3%. In the test dataset, the model recorded an accuracy
of 71%. The specificity for the benign cases was 66%, while the sensitivity for malignant cases
was 61% based on the classification report shown in Table 3. The F1 score for the malignant
cases was 69%, while the overall AUC was 71%. The model is well performing in the detection of
cancer but fails to detect some cases of malignancy that could be crucial in a real-life application
scenario. The confusion matrix (Figure 11) clearly shows that most misclassifications come from
false negatives (malignant predicted as benign). The accuracy curve (Figure 12) illustrates how
training accuracy increases much faster than validation accuracy, suggesting mild overfitting.
Figure 13: Training and Validation Loss Curve shows how the training and validation loss evolved
over the epochs. A smooth decline in training loss along with the stabilization of validation loss
indicates that the model is learning effectively without severe overfitting Finally, the ROC curve
(Figure 14) confirms that while the model is an improvement over the baseline CNN, it remains
only moderately effective at separating benign from malignant cases.
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FIGURE11: Confusion matrix - Freeze Base Model Layers (DenseNet121).
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FIGURE 12: Accuracy and Val curve - Freeze Base Model Layers (DenseNet121).

Loss Curve (DenseNetl2]l Frozen Layers)

—8— Train Loss
“al Loss
a.n
0.7 4
=
5
LER o
- \
0.9 -
2 4 [ H 103

Epochs=

FIGURE 13: Training and Validation Loss Curve - Freeze Base Model Layers (DenseNet121).
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FIGURE14: Receiver Operating Characteristic (ROC) Curve - Freeze Base Model Layers (DenseNet121).
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Class Precision Recall FI-Score Support
Benign 0.66 0.83 0.74 477
Malignant 0.79 0.61 0.69 514
Accuracy 0.71 991
MacroAvg 0.73 0.72 0.71 991
WeightedAvg 0.73 0.71 0.71 991

TABLE 3: Classification Report - Freeze Base Model Layers (DenseNet121).

5.3. Unfreeze Some Layers of the Base Model (DenseNet121)

Unfreezing the deeper layers of DenseNet121 provided a clear improvement in performance
compared to the frozen-based approach. The classification report in Table 4 con- firms that both
sensitivity and specificity were balanced, with the model achieving an F1- score of 84% for benign
and malignant classes alike. In Figure 15, the confusion matrix clearly identifies the model’s
capacity to minimize the number of both false positives and false negatives, indicating a better
level of accordance between the predicted and actual outcomes. Furthermore, this enhanced
performance is even amplified by the training process history as shown above. From Figure 16
above, the accuracy graph perfectly displays increased validation accuracy over the epochs, and
from the loss graph shown in Figure 17 above, the model converges to the optimal solution with
minimal overfitting. Finally, the ROC curve above clearly shown in Figure 18 clearly identifies the
model’s capacity to distinguish benign from malignant outcomes effectively with an AUC value of
0.85, which clearly confirms the DenseNet121 fine-tuned model capacity to efficiently differentiate
malignant from benign cases, which is the most optimal model tried.
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FIGURE 15: Confusion Matrix - Unfreeze Some Layers of the Base Model (DenseNet121).
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FIGURE 16: Accuracy Curve - Unfreeze Some Layers of the Base Model (DenseNet121).
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FIGURE 17: Loss Curve - Unfreeze Some Layers of the Base Model (DenseNet121).
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FIGURE 18: ROC Curve - Unfreeze Some Layers of the Base Model (DenseNet121).

Class Precision Recall FT1-Score Support
Benign 0.85 0.82 0.83 477
Malignant 0.84 0.87 0.85 514
Accuracy 0.84 991
MacroAvg 0.84 0.34 0.34 99T
Weighted Avg 0.84 0.84 0.84 991

TABLE 4: Classification Report - Unfreeze Some Layers of the Base Model (DenseNet121).

Table 5 presents the evaluation metrics for the models trained on the CIB dataset. The
conventional CNN baseline achieved perfect sensitivity but failed completely in specificity, leading
to a poor AUC and F1-score, indicating that it classified almost all samples as positive. When
DenseNet121 was introduced with frozen base layers, the performance improved, showing a
more balanced sensitivity and specificity, though the overall scores remained moderate. The best
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performance came from unfreezing some DenseNet121 layers, which provided a well-balanced
sensitivity and specificity, alongside a strong F1-score and AUC, highlighting the benefit of fine-
tuning over a simple frozen-base transfer learning approach.

Figure 19 further supports this by illustrating how the fine-tuned DenseNet121 achieved more
stable and reliable classification behavior compared to the other models, confirming its superiority
for the CIB dataset.

Model Sensitivity(%) Specificity(%) AUC(%) { (7] chore
(9

Conventional 100.00 0.00 50.00 0.00
CNNModel Freeze Base 61.00
Model Layers 66.00 71.00 69.00
(DenseNet121)
UnfreezeSome layers 87.00
(Dense-Net121) 85.00 84.00 84.00

TABLE 5: Evaluation metrics for the models trained on the CIB dataset.

Evaluation Metrics in CIB Dataset

100 4 Metrics
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FIGURE 19: Classification behavior compared to the other models.

5.4. Model Prediction on Sample Mammograms

To test the efficiency of the fine-tuned DenseNet121 model, two typical mammogram images of
breast cancer were chosen: malignant and benign (Figures 20 and 21). These images were fed
into the fine-tuned DenseNet121 model for the result. Figure 20 shows the malignant
mammogram. Both the irregular masses and the tissue patterns of the image were efficiently
captured by the fine-tuned model, thereby predicting the image to be malignant. Figure 21
illustrates the benign mammogram image with homogeneous breast tissue. Though the image
generally resembles the malignant image with both irregular masses and homogeneous breast
tissue patterns, the fine-tuned DenseNet121 efficiently identified the benign image. unfreeze
layers in the DenseNet121 model for the efficient identification of the mammography image.
Hence, with the unfreeze technique of the DenseNet121 model, both the low-level and high-level
image features of the mammographic image can be learned. This plays an important role in the
efficiency of the mammographic image. the efficiency of the fine-tuned DenseNet121 model in
medical applications for the identification of benign and malignant breast masses in
mammographic images.
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FIGURE 21: Benign Mammogram Prediction.

5.5. Computational Performance Analysis

The computational efficiency, memory consumption, and classification performance of the breast
cancer classification models using transfer learning with DenseNet121 and a standard CNN differ
considerably. Here, these factors are compared by evaluating the performance of a CNN model
trained from scratch with two variants of a pre-trained Dense- Net121 model: one with frozen
base layers and another with partially unfrozen layers for fine-tuning. The results, as summarized
in Table 6, outline the trade-offs between classification accuracy and computational expense
among these approaches. The baseline CNN model, trained from scratch, incurs a relatively
modest computational expense, with each epoch requiring approximately 46 to 49 seconds,
thereby needing approximately 23 to 25 minutes of total train time for 30 epochs. While
computationally light, the model does not learn complex patterns in mammographic images very
well, with an accuracy of only 51.87%, and validation loss plateauing at around 0.6933. This
modest performance is indicative of poor feature extraction, making the model unsuitable for
high-stakes medical application. Memory consumption is modest, with GPU VRAM usage
between 1 and 2GB and CPU RAM usage between 4 and 6 GB. In contrast, the use of a pre-
trained Dense- Net121 with frozen base layers yields a significant increase in classification
accuracy at the expense of greater computational demands. Since feature extraction entails
training only the classification head, this model achieves a training accuracy of 81.42% and
validation accuracy of 69.36%. Yet, these improvements come at a cost in training time, with
each epoch now taking between 140 to 160 seconds, and thus total training time taking around
25 minutes for 10 epochs. Memory footprint also increases, with GPU VRAM us- age increasing
to 4 to 6 GB and CPU RAM usage increasing to 8 to 12 GB.
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Fine-tuning of DenseNet121 by unfreezing selective layers enhances feature extraction further so
that the model can adapt better to the breast cancer dataset. The process results in improved
classification performance compared to the frozen version but with an increased possibility of
overfitting. The additional computational expense raises training time to about 200 to 250
seconds per epoch, making the total training time about 37 minutes. This variant also consumes
much more memory, with the GPU VRAM usage increasing to about 6 to 10 GB and CPU RAM
usage up to 12 to 16 GB. As demonstrated in Table 6, the comparative analysis indicates the
trade-off between computational efficiency and classification performance. The conventional CNN
model is lean but lacks sufficient feature extraction capability and thus is not useful for clinical
purposes. The frozen layers of pre- trained DenseNet121 present a well-rounded solution, where
there is huge improvement in accuracy with manageable training times. DenseNet121 further
fine-tuned improves classification accuracy but at greater computational expense. These results
imply that transfer learning with selective fine-tuning yields a better and cost-effective strategy for
breast cancer classification compared to training CNN models from scratch.

Model TrainingTime TotalTraining GPU CPURAM(GB)
perEpoch(s) Time(min) VRAM(GB)
46- 49 23-25 1-2 4-6
(from scratch)
DenseNet121 140 -160 25 4-6 8-12
(Frozen)
DenseNet121 200 -250 37 6-10 12-16
(Fine-Tuned)

TABLE 6: Comparative analysis puts at the forefront the trade-off between classification accuracy and
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FIGURE 22: Computational Performance Analysis.
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5.6. Statistical Significance Analysis

For the testing Table 7, shows the statistical significance when comparing the accuracy results of
the three models, namely, baseline CNN, DenseNet121 with frozen layers, and DenseNet121
with partially unfrozen layers, paired t-test was applied to check whether differences among
accuracy results of models were statistically significant. The test generated the t-statistic value of
-242.04 and p-value <0.0001, an extremely significant difference in performance, particularly
between the baseline CNN and fine-tuned DenseNet121 model. It is an implication that the
observed improvements in the accuracy do not necessarily arise from random variation but are
statistically significant. Furthermore, a one-way ANOVA test was employed to compare
classification accuracy for the three models. The test produced an F-statistic of 14,353.64 with a
p-value of <0.0001, also indicating strongly that the differences in model performance are highly
significant. To check these findings, a Wilcoxon signed-rank test was applied, returning a W-
statistic of 0.00 and a p-value of 0.0625. Although this is just over the usual 0.05 significance
threshold, it does indicate a tendency towards statistical significance. These statistical results
strongly indicate that fine-tuning DenseNet121 has a significant level of improvement on the
accuracy of breast cancer classification. The results validate the advantages of transfer learning
over conventional CNN training techniques, thus affirming the application of DenseNet121 as the
model of choice.

Test Test p-value | Interpretation

Applied Statistic

Paired - | 1=-242.04 | < Extremely significant difference, particularly between the baseline
test 0.0001 | CNN and the fine-tuned DenseNet121 model.

One-way | F =|< Strongly significant performance differences across all three models.

ANOVA | 14,353.64 0.0001

Wilcoxon | W=0.00 0.0625 | Slightly above the 0.05 threshold, indicating a trend toward
Signed- significance but not statistically significant.
Rank Test

TABLE 7: Statistical Significance Analysis of Model Performance.

5.7. Comparative Model Performance

Table 8, presents a comparative analysis of the performance of the Unfreeze Base Model Layers
with DenseNet-121 (Proposed Work) against other well-established models used for breast
cancer image classification. The results show that the proposed model outperforms the others in
terms of Accuracy, Precision, Recall, and F1-Score, with an accuracy of 84% and an F1-Score of
85%, indicating its strong overall performance in breast cancer detection.

S/N | Author(s), | ldentified Gap | Method Result Limitation Comparison
Year with  Proposed
Work
1 Falconi et | Reliance on | SVM using | AUC = | Performance The proposed
al. (2020) | hand-crafted 181 hand- | 0.805 constrained by | DenseNet121
features limited | crafted manual feature | eliminates
the ability to | features on design. manual feature
capture the DDSM extraction by
complex dataset. automatically
mammographic learning
patterns. hierarchical
features,
achieving
substantially
higher
performance.
2 Ansar et | Small dataset | Transfer 78.4% and | Accuracy The proposed
al. (2020) | size and limited | learning with | 74.3% limited by | method applies
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CNN depth led | ResNet50 accuracy dataset DenseNet121
to suboptimal | and variability and | on the larger
performance. MobileNet size. and more
on the MIAS complex CBIS-
dataset. DDSM dataset,
achieving 88%
accuracy  and
improved
robustness.

3 Sharma et | Existing VGGI16 with | 81.99% Underperformed | The proposed
al. (2022) | architectures transfer accuracy on more | DenseNetl121

lacked learning on complex demonstrates

robustness for | the  MIAS datasets. superior

complex dataset. accuracy  and

mammographic generalization

classification. on the
challenging
CBIS-DDSM
dataset.

4 Proposed | Conventional Fine-tuned Accuracy | Computationally | The proposed
Method CNNs and prior | DenseNet121 | = 84%, | demanding; method directly
(2025) transfer pretrained on | Fl-score = | requires further | addresses  all

learning ImageNet. 0.87, validation on | identified gaps
approaches Sensitivity | multi-center by leveraging
lacked = 0.87, | real-world DenseNet121’s
robustness and Specificity | datasets. dense
clinical = 0.82, connectivity for
relevance  on AUC = robust feature
CBIS-DDSM. 0.85 extraction,
outperforming
conventional
CNNs and prior
transfer
learning
models.

TABLE 8: Comparative Analysis of Related Works and Proposed Study.

6. DISCUSSION

The development in breast cancer classification systems has evolved from traditional machine
learning algorithms to more sophisticated deep learning algorithms. In the early stages of this
research area, much reliance was placed on the hand-engineered features derived from the
mammograms by Falconi et al. (2020). Although the results reported by this early study are
modest (AUC = 0.805), the reliance on hand-engineered features is somewhat limited in the
ability to accommodate the diverse nature associated with breast cancers.

For example, Ansar et al. (2020) achieved 78.4% and 74.3% accuracy using ResNet50 and On
the other hand, our proposed method uses DenseNet121, which is able to extract hierarchical
feature representations without human intervention in the process of feature extraction. This not
only saves time in the diagnostic process but also increases efficiency. Other works that have
attempted to utilize the process of transfer learning using architectures such as ResNet50,
MobileNet, and VGG16 have been done by authors such as Ansar et al. (2020), Prusty et al.
(2022), and Sharma et al. (2022), respectively. While these works have significantly improved the
process of feature extraction compared to classical methods, the results were still limited by the
size and complexity of the dataset. For example, the works by Ansar et al. (2020), for instance,
were only able to get 78.4% accuracy using ResNet50 and 74.3% accuracy using MobileNet to

International Journal of Computer Science & Security (IJCSS), Volume (19) : Issue (5) : 2025 254

ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php




Blessing Olorunfemi, Adewale Ogunde, Adenike Adeniji-Sofoluwe, Bosede Oguntunde, Samson Arekete,
Alex Pearson, Funmilayo Olopade & Benjamin Aribisala

classify the MIAS dataset. A similar trend was observed by Prusty et al. (2022), who were only
able to get 74.5% accuracy using MobileNet to classify the CBIS-DDSM dataset. These results
were consistent with Sharma et al. (2022), who were only able to get 81.99% accuracy using
VGG16 to classify the MIAS dataset. However, the accuracy significantly reduced for the more
complex dataset. However, the DenseNet121 model proposed here overcomes these drawbacks
effectively. This is because the DenseNet121 model has a dense connectivity pattern, which
promotes the reuse of features and prevents the issue of vanish gradients. Hence, the proposed
model is appropriate for complex mammography images. In addition, the proposed model
obtained good generalization performance through the application of transfer learning with an
accuracy of 88%, F1 score of 0.87, sensitivity of 0.87, specificity of 0.82, and an AUC value of
0.85 on the CBIS-DDSM dataset, which outperforms the existing models. In fact, the CBIS-DDSM
dataset is yet to be fully explored despite being an important one.

Importantly, our results highlight the clinical utility of our approach. Contrary to previous models,
where manual extraction of features (Falconi et al., 2020) or simpler data (Ansar et al., 2020;
Sharma et al., 2022) were considered due to restrictions with manual extraction, we have proven
our DenseNet121-based solution for a large and diverse dataset. This indicates its applicability
for clinical use where quality and variability of images may impact diagnostic outcomes.

6.1. Limitation and Future Scope

Despite the fact that the proposed transfer learning model using DenseNet121 showed improved
classification results compared to standard CNNs, some drawbacks need to be mentioned. First
and foremost, the current study is based on the CBIS-DDSM dataset. Although widely used and
accepted for delivering improved classification results compared to other existing classification
methods, it is likely that this dataset lacks the variability seen in real-world clinical images of
mammography. Thus, generalizing the current study to other untested data sources, possibly
coming from other technology sources or other demographics as well, could be a limitation.
Additionally, the model still requires computational resources for training and possibly for fine-
tuning. It is clear that deep learning methodologies continue to be criticized for lacking
transparency and thus continue to be a deterrent for the development of clinical decision support.
For this purpose, for addressing the current limitations and possibly other unmentioned
drawbacks of the current study, using XAl-enabled methodologies for identifying areas of interest
for mammography images could be beneficial for assisting radiologists in making decisions.
Besides, the potential of mammography data will most likely be leveraged by complementing it
with other modalities of medical imaging, like ultrasound, MRI, or clinical records. Another very
promising direction is lightweight architectures or model compression techniques to enable
deployment in low-resource settings. Finally, the advanced learning paradigm involves federated
learning that assures patient data privacy while taking advantage of multi-institutional datasets for
generalizability.
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